17 : Markov Chain Monte
نویسندگان
چکیده
which decreases as J gets larger. So the approximation will be more accurate as we obtain more samples. Here is an example of using Monte Carlo methods to integrate away weights in Bayesian neural networks. Let y(x) = f(x,w) for response y and input x, and let p(w) be the prior over the weights w. The posterior distribution of w given the data D is p(w|D) ∝ p(D|w)p(w) where p(D|w) is the likelihood. For a test input x∗, we approximate the distribution of the response variable y∗ as
منابع مشابه
T - 79 . 5204 Combinatorial Models and Stochastic Algorithms
I Markov Chains and Stochastic Sampling 2 1 Markov Chains and Random Walks on Graphs . . . . . . . . . . . 2 1.1 Structure of Finite Markov Chains . . . . . . . . . . . . . 2 1.2 Existence and Uniqueness of Stationary Distribution . . . 10 1.3 Convergence of Regular Markov Chains . . . . . . . . . . 14 1.4 Transient Behaviour of General Chains . . . . . . . . . . 17 1.5 Reversible Markov Chains...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015